
DRGGroupers Software & Services

A Catalog, Manual and Reference

By Brendan F. Hemingway
Lead Developer, DRGGroupers

REVISED October, 2015 (v33) V33 Release

Copyright © 2015 Brendan F. Hemingway

All rights reserved. No part of this book may be reproduced in any
form without permission in writing from the publisher, except by a
reviewer, who may quote short passages within a book review.

Library of Congress Control Number: applied for

ISBN 0-9819852-0-3

Printed in the United States of America

Cow and Calf Publishing
5 Spring Road
Branford, CT 06405

This publication is designed to provide information in regard to the
subject matter covered. It is sold with the understanding that the
publisher and the author are not engaged to render legal, account-
ing or other professional services. If legal advice or other expert
assistance is required, the services of a competant professional
should be sought.

Table of Contents

Chapter 1 Introduction 13

DRG Basics 13

DRG Historical Note 14

Reimbursement 14

Federal DRGs 15

Other DRG Definitions 15

Diagnosis & Procedure Codes 16

Assigning DRGs 17

DRG Properties 18

New in 2008: POA, HAC 18

POA 18

HAC 18

How To Use This Book 19

Syntax Notation 19

Link to M+H Consulting 20

Chapter 2 DRG Assignment Software 21

POA, HAC and Exempt Status 21

How Groupers Work 21

Input 21

Process 22

Output 22

Return Codes 23

4 DRGGroupers.net

Chapter 3 Our Product Line 24

Chapter 4 DRG Assignment Service 25

What Is The DAS? 25

Required Data Elements 25

Version Processing Options 26

Turn-Around Time 26

How Do I Send My Data? 26

What Do I Get Back? 27

What Do I Do Next? 27

Pricing and Custom Orders 28

Chapter 5 DRGFilt 29

Staying Current 29

How to Use a Filter 29

Command Line Arguments 30

Control File 30

Job Control 31

Input Specification 32

Output Specification 33

Installation 34

Typical Scenario 34

Super Control File 34

Chapter 6 Excel-DRG 40

Requires the DLL and Masks 40

Staying Current 40

Table of Contents 5

Technical Details 41

Columns of the Spreadsheet 41

Column A: ID Number 41

Column B: Age 41

Column C: Sex 41

Column D: Discharge Disposition 42

Column E: Exempt flag 42

Column F-AD: Diagnoses 42

Column AE-BC: POA flags 42

Column BD-CB: Procedures 42

Column CC: DRG Version 42

Column CD: Use POA indicator 42

Column CE: DRG 43

Column CF: DRG Description 43

Column CG: Grouper Return Code 43

Column CH: MDC 43

Column CI: DRG Weight 43

Column CJ: GMLOS 43

Detailed Instructions 43

Installation 44

Chapter 7 Access-DRG 45

Requires the DLL and Masks 45

Staying Current 45

Technical Details 46

Typical Usage 46

Chapter 8 Grouper DLL 47

6 DRGGroupers.net

Staying Current 47

Technical Details 47

Distribution 48

Calling DLL Functions 48

VB Example: DECLARE 48

C Example: Linking 49

VB DLL API 49

MHDLLVER 50

MHDRG 50

Return Code -1 52

VB Sample Code 52

C Sample Code 56

Chapter 10 Perl Shared Object 60

Staying Current 60

Technical Details 60

Distribution 61

Calling Perl SO Functions 61

Sample Perl Code 61

Chapter 11 PHP Shared Object 63

Staying Current 63

Technical Details 63

Distribution 64

Calling PHP SO Functions 64

Sample PHP Code 64

Chapter 12 C-Callable Object 67

Table of Contents 7

Staying Current 67

Technical Details 67

Distribution 68

Calling CO Functions 68

Sample C Code 68

Appendix A: The MDCs 72

Appendix B: Return Codes 74

Appendix C: Discharge Status 75

Appendix D: Software Licenses 76

Reseller License 76

Non-standard Licenses 76

Contact Information 76

Standard Client Software License 76

Standard Server Software License 77

Appendix E: File Dictionary 78

drgmasks.v33 78

libdrgv33_32bit.so 78

libdrgv33.so 78

drgfiltv33.aix 78

drgfiltv33.exe 79

drgfiltv33_32bit 79

drgfiltv33 79

drgman1.pdf 79

8 DRGGroupers.net

vbdrgv33.exe 79

mhdrgvb.xls 80

MHGrouper.mdb 80

perldrgv33_32bit.so 80

perldrgv33.so 80

perldrgv33.pm 80

phpdrgv33_32bit.so 81

phpdrgv33.so 81

Appendix F: New for 2015 (V33) 82

Glossary 83

Classification 83

CPT Codes 83

DRG 83

DRG Grouper 84

DRG Version 84

Federal DRGs 85

HAC (Hospital Acquired Complication) 85

ICD9cm Codes 85

ICD10 Codes 85

Major Diagnostic Category (MDC) 86

Masks File 86

POA (Present on Admission) 87

Return Code 87

Significant Code Bit String (dflg and sflg) 87

Index 88

Table of Contents 9

10 DRGGroupers.net

Introduction

This book is provided by DRGGroupers as a service to our cus-
tomers. It is intended to help our customers in any or all of three
different ways:

1. as a catalog of our software and services

2. as a manual of how to use our software or services

3. as an introductory reference to DRGs

This book is not intended as a general reference for Diagnosis Re-
lated Groups (DRGs). For general information about DRGs we re-
fer you to Wikipedia’s DRG entry,

en.wikipedia.org/wiki/Diagnosis_Related_Group

and to our own on-line Frequently Asked Questions (FAQ) page
for DRGs,

drggrouperstechblog.blogspot.com/p/faq_04.html

However, we often are asked general questions about DRGs and
different kinds of DRGs, so we provide our basic answers here to
guide prospective customers (and avoid having to answer these
questions on the phone or in email!)

DRG Basics

A DRG classifies an inpatient hospital stay on the basis of diag-
noses, procedures, age, gender and discharge status into one of 500
mutually exclusive groups, numbered 0 to about 500.

There are two special DRG values: 0 (which means "not grouped")
and 999 (which means "ungroupable"). The rest of the DRG values
have descriptions, weights, LOS outlier trim points and mean LOS
all of which depend on the DRG version.

(Prior to v33, DRG 470 was "ungroupable.")

Chapter 1 Introduction 11

DRG Historical Note

The original DRGs were invented at Yale University’s Health Sys-
tems Management Group (HSMG) in the late 1970s. The principal
researchers were John Thompson, a nursing guru, and Bob Fetter,
an Operations Research kind of guy. Ron Mills, co-founder of the
parent of DRGGroupers, was the technical lead and he was the one
who created the biostatistical analysis package, AUTOGRP, which
made the underlying research possible in real-time.

DRGs were adopted by the United States federal government’s
Health Care Finance Administration (HCFA) and first released in
1982 as version 2 (version 1 was the unreleased version which
HCFA evaluated). Every year, on October 1st, HCFA releases a
new CMS DRG version.

In 2001, the United States federal government’s Health Care Fi-
nance Administration ("HCFA") became "the Centers for Medicare
& Medicaid Services" or "CMS".

DRGs are good for providing a context in which to analyze hospi-
tal stays. DRGs were designed to allow hospitals to operate on a
more industrial basis, with resource allocation and cost-center
analysis, all of which were very hip in the late 1970s when DRGs
were created. In a nutshell, DRGs predict likely resource con-
sumption for any giv en hospital stay, allowing one to determine if
the given hospital stay was too short, too long or just right.

Reimbursement

Originally, DRGs were designed to predict Length of Stay and
were not concerned with reimbursement. However, following a
study of their effectiveness as predictors of overall hospital re-
sources required to treat different kinds of patients, DRGs were
chosen by Medicare as the basis of the Prospect Payment System
for hospitals. Since DRGs hit the scene as part of a reimbursement
scheme, DRGs became linked with reimbursement in many peo-
ple’s minds.

Since DRGs measure resource consumption in the form of a nor-
malized weight, using DRGs for reimbursement not only makes
sense, it is easy: you multiply the DRG-specific weight by the fa-
cility-specific factor and voila! you have a reimbursement amount

12 DRGGroupers.net

for a given inpatient stay. Howev er, this additional step is called
"pricing" and is not part of the grouper per se; it is a separate pro-
cess which is not part of grouping. Software which makes this cal-
culation is called a "pricer." For convenience, most pricer providers
bundle the DRG grouper in with their software, which had con-
fused grouping and pricing in many people’s minds.

We are hardly experts on buying pricing software, but if you are
looking to buy it and are stuck, check out 3M

TM
Health Information

Systems. They seem to have lots of pricers out there in the world,
so someone is buying them.

Federal DRGs

In the United States of America, the "official" definition of DRGs
is the one defined by CMS (formerly HCFA). Strictly speaking, the
CMS grouping algorithm is public, and anyone can implement it in
software. (There are books published so that one could even do
without the software and assign DRGs by hand.) However, CMS
has blessed NTIS as the distributor of the reference grouper, which
is written in IBM 360 Mainframe assembler. If you have an IBM
360-compatible computer, you can buy that grouper through NTIS
and run that.

Other DRG Definitions

While we usually mean "US Federal DRGs" when we say "DRGs,"
there are many different governments which have defined their
own version of DRGs. New York state defined their own. New Jer-
sey defined their own for a while. France has their own, as does
Portugal. Australia recently joined the club with their own version.

There are so many different DRG definitions because the federal
DRGs are a bit of a compromise: The creators of the federal
DRGs were constrained by the number of data elements that they
could reasonably expect any giv en hospital in the country to col-
lect. Furthermore, their baseline population is all Medicare pa-
tients, which skews the results somewhat.

As a result, the CMS DRGs are unambitious with respect to severi-
ty of illness and resource consumption and not appropriate to all
hospital populations.

Chapter 1 Introduction 13

Many groups have tried to extend the basic DRG concept to fix
these flaws. 3M

TM
/HIS sells AP-DRGs ("All Payor" DRGs). Yale

University’s School of Medicine came up with RDRGs ("Refined"
DRGs). CMS itself is working on SDRGs ("Severity-adjusted"
DRGs).

Since DRGGroupers is constantly asked about RDRGs®, we asked
the nice folks at HSC to give us a blurb to put on our website to an-
swer this question. Here is their reply:

The RDRG severity-of-illness software is a product of Health Sys-
tems Consultants, Inc. in New Haven, Connecticut. The software
groups inpatient hospital discharge data into DRGs and into sever-
ity classes within DRGs. The DRGs produced are identical to those
of the public domain DRG grouper from the Health Care Financ-
ing Administration (HCFA--now CMS). The software assigns pa-
tients to 511 DRGs and to 1198 Refinement Group (RGN) numbers
and is updated each year to conform to the CMS DRGs. Since the
software system can predict hospital resource use, it can be used to
improve hospital casemix analysis, analyze hospital performance,
evaluate physician performance, measure quality, develop budgets,
and to reimburse hospitals.

The RDRG severity-of-illness software was developed from a Yale
University study funded by CMS (formerly HCFA) entitled, "DRG
Refinement with Diagnostic Specific Comorbidities and Complica-
tions: A Synthesis of Current Approaches to Patient Classification."
The study, completed in 1989, was designed to adjust the DRG sys-
tem for the severity of a patient’s illness. For information about the
RDRG software, please contact Karen Schneider at

karen.Schneider@healthsyst.com

or call Health Systems Consultants at (203) 785-0650.

Diagnosis & Procedure Codes

The official federal grouper, version 2 through 32 inclusive, only
accepts ICD9cm codes (International Committee on Diseases, ver-
sion 9, Clinical Modifications) for both diagnoses and procedures
and ICD10 codes starting with v33. However, the American Medi-

14 DRGGroupers.net

cal Association has defined an alternative scheme for coding proce-
dures, which they call CPT (Current Procedural Terminology).
Many providers have chosen to code even in-house procedures us-
ing CPT. But if you want to group with CPT codes as input, then
you have to convert them to ICD9cm codes first. This conversion is
not a simple one-to-one mapping. Many vendors sell CPT-to-ICD
"crosswalks," but DRGGroupers is not one of them.

Assigning DRGs

The next chapter in this book will focus on DRG assignment soft-
ware, so we will give only a cursory treatment here.

A DRG Grouper is a computer program or module which takes
those 5 clinical and demographic data as input and gives a corre-
sponding Diagnosis Related Group as output. The diagnoses and
procedures are encoded as either ICD9cm (versions 2-32) or
ICD10 (version 33 and above). The age is a small integer from 0
to 129. The sex is encoded as 1 for male, 2 for female and 3 for
unknown (don’t ask). The discharge status, also known as "dis-
charge disposition," is usually encoded either using UHDDS or
UB92 (both medical billing standards).

The standard CMS (formerly HCFA) grouper, ours included, will
accept up to 10 diagnoses (versions 2 through 32, inclusive or up to
25 after v32), the first of which is presumed to be the Primary diag-
nosis. Likewise, up to 15 procedures (versions 2 through 32, inclu-
sive or up to 25 after v32) are accepted, but their significance is de-
termined by the grouping process, so their order is not important.

The relevance of any diagnosis or procedure code is determined by
its attributes, which attributes are implemented as a "bit mask" or
"mask" or "bit string." (You may see any of these terms in our
documentation.)

The attributes guide the grouper in its use of any giv en code; for
instance, the attributes say whether or not a code is gender-specific,
or if it is allowed as a primary diagnosis. In addition to the infor-
mation encoded in the attributes, the grouper applies logic to actu-
ally classify any giv en inpatient stay into a single DRG.

Chapter 1 Introduction 15

DRG Properties

Every DRG has certain properties. Those properties are:

• A DRG description (70 characters wide, version-dependant)

• An MDC (see the glossary for details)

• A Geometric Mean Length of Stay (GMLOS)

• A Weight (a normalized prediction of resource consumption)

• A Category: either "Surgical" or "Medical"

• A low "trim point" (the LOS below which lie the low outliers)

• A high "trim point" (the LOS above which lie the high outliers)

The DRGGroupers grouper returns all these and more: a set of
flags for each of the Diagnosis Codes and Procedure Codes so that
the caller can determine which codes were actually significant to
the grouping.

New in 2008: POA, HAC

As of October 1st, 2008, there are two new concepts in DRG As-
signment:

• A diagnosis attribute of "Present on Admission" (POA)

• Hospital Acquired Complications (HAC)

POA

The federal goverment is trying to get away from paying for medi-
cal mistakes; a common analogy is not paying a mechanic for a
new car window if that mechanic accidentily breaks that window
while fixing your brakes.

In order to avoid paying for medical mistakes, diagnoses are now
flagged as having been present on admission (POA).

16 DRGGroupers.net

The values for the POA flag are not, as one might expect, simply Y
or N; rather the following options are defined:

• Y for Yes -N for No -U for Unspecified -W for clinically unde-
termined -1 for unreported / not used / exempt from reporting

HAC

The logic which embodies handling the POA conditions is called
the Hospital Acquired Complications ruleset. Some hospitals are
exempt from the HAC, so the DRG assigment software has to be
able to accept a flag which indicates that the institution from which
these data come is exempt.

How To Use This Book

We expect that, in the usual case, the reader will start with this in-
troductory section and then go to the chapter on the specific prod-
uct about which the reader wishes to know more.

Note that the chapters often contain supporting information such as
sample code for calling program modules or screen shots of inter-
active products.

However, we understand that the specific chapter may contain un-
familiar jargon, so we provide the glossary at the end of the book.
We also understand that the specific chapter may contain unfamil-
iar concepts, so we provide a few explanatory chapters which im-
mediately follow this introduction.

Syntax Notation

When giving the syntax of commands, we try to follow the stan-
dard notation. To us this means that optional arguments are written
within square brackets, [like this], and required arguments are writ-
ten within curly braces, {like this}.

command-name [optional] {required}

Chapter 1 Introduction 17

Lists of possibilities are given within vertical bars, like so:

[a|b|c]

which means "a or b or c";

Iteration is denoted by elipses, like so:

command-name {mode} [file...[file]]

which means "the command is called ’command-name’, the mode
argument is required and you don’t hav e to give a file argument
and you can give more than one file argument".

Link to M+H Consulting

DRG Groupers is a business unit of M+H Consulting. M+H Con-
sulting is a medical information systems company who created
DRG-related software to help them deliver service to their clients.
A number of clients wanted to buy the software without needing
any services, so M+H created DRGGroupers as a way of staying
focused on their primary market. M+H continues provide software
and technical support to DRG Groupers.

For more information on M+H Consulting, see their web site:

www.mhconsulting.com

18 DRGGroupers.net

DRG Assignment Software

Software to assign DRGs is also called a "DRG Grouper" or just a
"grouper" for short.

If you are looking for general information about DRGs, please re-
fer to the previous chapter in general and the section "DRG Basics"
in particular.

If the jargon used here is unfamiliar to you, perhaps you will find
definitions in the brief glossary of terms at the end of this book.

POA, HAC and Exempt Status

As of version 26, which was released in October of 2008, the no-
tions of Present on Admission and exempt-from-Hospital-Ac-
quired-Complications were introduced into DRG assigment. Our
software supports these ideas if desired, and can ignore them as
well, if required.

How Groupers Work

Like any other piece of software, groupers can be described with
the Input / Process / Output model.

Input

There are five different parameters to a grouper which are needed
for every Electronic Medical Record (EMR) to which a DRG is to
be assign. Those parameters are:

• Patient age on admission, expected to be between 0 and 124

• Patient sex, coded: 1=male, 2=female

• Discharge status coded in either the UB92 standard or the
UHDDS standard

Chapter 2 DRG Assignment Software 19

• A list of up to twenty-five ICD10 diagnosis codes, in order of
significance

• A list of up to twenty-fix ICD10 procedure codes, in order of sig-
nificance (and sometimes called "surgery codes")

In order to assign a DRG, a grouper needs access to a list of bit
masks for every possible ICD10 code and code cluster. This list is
called "the masks file" and is DRG version-specific.

Process

The grouper uses these inputs to determine a DRG by applying
both a specific DRG version’s logic and the masks. As part of the
process, a Major Diagnostic Category (MDC) is determined as
well.

Output

In theory, a grouper could simply spit out a DRG for every input
record. In practice, ther are a number of other, related, data ele-
ments that the user finds useful:

• A return code, indicating success or failure of the grouping at-
tempt

• The MDC

• The DRG

• The Classification of the DRG

• A bit string of which Diagnosis codes were significant

• A bit string of which Procedure codes were significant

20 DRGGroupers.net

Return Codes

A return code of zero means that nothing went wrong. Any other
value denotes a specific problem. For a list of the return codes for
any DRGGroupers product, please refer to Appendix B.

Chapter 3 Our Product Line 21

Our Product Line

DRGGroupers sells both consulting services and grouper software
("groupers").

Our consulting services are documented elsewhere; this chapter is
about our groupers.

We sell an application, DRGFilt, which is intended to be used by
users to assign DRGs to arbitrary data sets. We support Linux, AIX
and Windows. You buy DRGFilt and then run it on your data.

We sell embedable and callable DRG Assignment Engines which
allow programmers to a DRG assignment to their software or data
environments. For example, as proof-of-concept, we used our VB-
callable DLL to add DRG assignment to an excel spreadsheet and
to an MS-Access application and then we made these into products
because many Excel users and MS-Access programmers did not
want to do the integration themselves.

For our programmer tools, we support either Linux or Windows in
our on-line store. If you want to support some other environment
or help in adding DRG assignment to your product or service, we
are happy to do that but through our consulting services.

We use an outside porting lab named Ready to Run to provide us
with UNIX platforms on which to develop and test, so for an up-to-
date list of UNIX variants that we support, please see their web
site:

www.rtr.com

22 DRGGroupers.net

DRG Assignment Service

If you want DRGs assigned to some records and you don’t want to
buy, install and run the software yourself, then our DRG Assign-
ment Service (DAS) might be just what you are looking for.

Many of our customers are medical information analysts who do
not have an on-going need for DRG assignment. Instead, they hav e
the occasional dataset which they would like run through a
grouper.

For these customers, we started a service which we call our DRG
Assignment Service (DAS).

What Is The DAS?

The DAS works like this: you send us your dataset with some in-
formation about the file format and the record format. With that in-
formation, our software can find the data elements used in assign-
ing DRGs. We run your dataset through our grouper and return the
results to you along with a DRG summary report which gives you
an overview of your dataset’s DRG profile: a frequency distribution
of DRGs assigned and errors encountered.

Required Data Elements

1. Patient Sex, usually represented by ’F’, ’M’ and ’U’

2. Patient Age at admission, or Date of Birth and admission
date, from which we can calculate age at admission

3. Patient discharge disposition; see the Glossary for details.
(We can default to ’unknown’ if your data does not include
this element.)

4. Before v33: Up to ten ICD9cm diagnosis codes, in order of
importance

5. Starting with v33: Up to twenty-five ICD10 diagnosis
codes, in order of importance

Chapter 4 DRG Assignment Service 23

6. Before v33: Up to fifteen ICD9cm procedure codes, in or-
der of importance

7. Starting with v33: Up to twenty-five ICD10 procedure
codes, in order of importance

Version Processing Options

As part of the standard DAS, we offer two processing options: ei-
ther we will use any supported DRG version on all your records or
we will use the discharge date (which must be included in your
dataset) to determine which federal DRG version was in use at the
time of discharge and then use that version. Other methodologies
for determining what version to use are possible, but would fall un-
der the category of custom set-up programming and would require
a custom quote.

Turn-Around Time

We guarantee three business days, but we can often deliver same
day turnaround time if data is transferred electronically in both di-
rections. For on-line transfers, we prefer SCP but will use FTP or
email as required.

How Do I Send My Data?

You can send your data to us in any of sev eral common formats:

• Microsoft Access database, either Access 2007 or later;

• ASCII or EBCDIC text file with one record per line (either vari-
able-width fields with a separator or fixed-width fields are ok);

• SQL INSERT statements in a text file (either ASCII or
EBCDIC);

• MySQL database dump.

24 DRGGroupers.net

What Do I Get Back?

As part of the standard DAS, we will return any combination of the
following data elements as fields in the output dataset:

1. Grouper Return Code (what error, if any, arose during
grouping);

2. DRG Version used to group the record;

3. DRG Number assigned the record;

4. Major Diagnostic Category (MDC) of the assigned DRG;

5. The resource consumption weight of the assigned DRG;

6. The official description of the assigned DRG.

What Do I Do Next?

That depends on which return option you specify. The return op-
tions are:

1. At the beginning of the output dataset;

2. At the end of the output dataset;

3. As contiguous fields starting at a given field number;

4. As separate records with the same ID as the grouped input
record (assuming that the input record has an ID field and
that you have told us which field to use as the ID).

If we send you the DRG as part of your dataset, then you load we
send you ON TOP OF your existing data. This would be any of the
first three options listed above.

If we send you a separate DRG dataset, the fourth option listed
above, then you load that separate dataset into a new table and link
your existing data to that table by means of the record identifier.

Chapter 4 DRG Assignment Service 25

Pricing and Custom Orders

In order to keep things simple all the way around, we offer this ser-
vice as a flat fee by number of records in the input. If you can pro-
vide your data in any of the supported input formats mentioned
above, then you qualify for the flat fee schedule. You can find the
latest fee schedule at

www.drggroupers.net/services

If you cannot provide your data in one of these formats, it is likely
that we can still help you, but you would have to contact us for a
custom price quote. You can find our up-to-date contact informa-
tion on-line:

www.drggroupers.net/contact-us/

26 DRGGroupers.net

DRGFilt

If you are looking to assign DRGs to a dataset in batch mode, then
DRGFilt might be just what you are looking for.

DRGFilt is a UNIX-style "filter" because it is a console application
which reads from standard input and writes to standard output and
writes its error messages to standard error. Non-filters usually read
from a file and write to file.

Staying Current

DRGFilt is self-contained, to make it easier to deploy and use. But
this means that to stay current you have to buy a new one every
year and call the one which is appropriate.

How to Use a Filter

There are two ways to use a filter: either as an application or a step
in a chain of processes.

Example of a filter as a process:

% filter < in-file > out-file

In this example, the program "filter" is reading from a file called
"in-file" and writing to a file called "out-file".

Example of a filter as a link in a chain of processes:

% prog1 arg1 | filter | prog2

In this example, the chain starts with a program called "prog1"
which takes an argument, "arg1". The output of prog1 is passed as
input to a program called "filter" and the output of the program
called filter is passed as input to prog2.

A typical use of DRGFilt is to assign DRGs to exported data. Al-
most any database management system (DBMS) can export data as
text and import text as data. So the database administrator (DBA)
usually does the following:

Chapter 5 DRGFilt 27

1. export the data to be grouped as a comma separated value
file (CSV). Let us call this file "the export CSV."

2. run the export CSV through DRGFilt, creating new file
with the old data and the DRG in it. Let us call this file "the
import CSV."

3. import the import CSV into the DBMS, either overwriting
the data in the database or just importing the DRG by
matching on a key

Command Line Arguments

DRGFilt’s calling syntax is as follows:

drgfiltv33 {control-file.ini} [ini-file-group-name] [-q | -v | -l log-
file]

Because DRGFilt is a filter, you can also call it in this way:

prog1 | drgfiltv33 {control-file.ini} [ini-file-group-name] [-q | -v | -l
log-file] | prog2

or

prog1 | drgfiltv33 {control-file.ini} [ini-file-group-name] [-q | -v | -l
log-file] > output

The first argument is required: the name of the control file. See
"Control File" below.

The second argument is optional: name of the group within the
control file which will be used. This argument is optional because
this argument defaults to "drgfilt".

In any position, "-q" means "quiet" or "minimal informational out-
put" while "-v" means the opposite: "verbose" or "maximal infor-
mational output". In any position, "-l" should be followed by a
valid file name to which informational output will be directed.

28 DRGGroupers.net

Control File

The control file controls how DRGFilt behaves. The model is the
old-time mainframe "job control" file: you can specify all variable
aspects of input, process and output.

The format is a version of the Windows .INI file format because we
find this a clear and simple format for parameter specification.

Each job definition starts with a name, which is inside square
brackets [like this]. (The .INI file folks call this a "group" so we
do too.) Parameters are then specified in the "name = value" for-
mat, one per line. While parameters can be given in any order, we
like to follow a simple convention to make the files easier for hu-
man to read:

[group-name]

job control

input specification

output specification

Job Control

These are parameters which control DRGFilt’s operation.

The "fixed-example" job processes the CMS test data set. The
"csv-example" job processes the same test data set, but reformatted
as a CSV which we find much more common in the real world.

[fixed-example]

format = fixed ; input file format: either fixed or csv

verbose = 0 ; no debugging information

blip = 1000 ; give progress report every 1,000 records

blipeol = 0 ; 1=newline for progress report, 0=carriage return

batchver = 33 ; assign version 33 DRGs to this batch

maskdir = . ; directory in which to find drgmasks.v33

; no input file or output file, so this job is a filter

[csv-example]

format = csv (,) ; separator character is in parens

base = 0 ; field indices are zero-based, as opposed to 1-based, etc

inheaders = 1 ; 1=input column headers, 0=no input column headers

Chapter 5 DRGFilt 29

outheaders = 1 ; 1=want column headers, 0=no column headers

crlf = 0 ; type of end-of-line: 0=crlf (DOS), 1=lf (Unix)

blip = 1000 ; give progress report every 1,000 records

maskdir = . ; directory in which to find drgmasks.v33

batchver = 33 ; the DRG version to apply to this entire batch

infile = adt.csv ; input file name

outfile = x.csv ; output file name

verbose = 1 ; give debugging output

Input Specification

In order to group, DRGFilt needs the five inputs mentioned earlier:
patient sex, patient age, at least 1 and no more than 25 diagnosis
codes, anywhere from 0 to 25 procedure (surgery) codes, and a dis-
charge status. The input specification tells DRGFilt how to get
these elements out of the input.

; fixed-example, continued

; fixed-width input variables: name = length@offset

age = 3@0

sex = 1@3

ds = 2@4

dxl=8 ; dx length does not require an offset

poa= 7

dx = 200@23

sgl=7@0 ; pr length, offset is optional & ignored

surg= 175@223

exmp = 1@6

; -----

; these are already present from the CMS grouper:

; you could overwrite the incoming values if you wanted to

; drg = 3@603

; mdc = 2@600

; rc = 2@598

; -----

; csv-example, continued

; input variables: name = index

inid = 0

bdt = 1

sex = 2

exmp = 3

30 DRGGroupers.net

ds = 4

; these there keywords are allowed to have lists as parameters.

; lists can contain single entries, ranges, or both. for example

; 1,2,7-22,50

dx = 5-29

poa = 30-54

surg= 55-79

adt = 80

; calcver gives the index of a field to be used as the date from which

; we calculate the appropriate DRG version. If any record’s calculated

; DRG version does not match the batchver, we skip that record

calcver = 80 ; NOTE: same index as "adt" because we are using the same field

Output Specification

The control file also tells DRGFilt where you want it to write the
results of its grouping.

; fixed-example, continued

; these are written out by DRGFilt

rc = 2@1760

mdc = 2@1762

drg = 3@1764

; csv-example, continued

; these are written out by DRGFilt

outid = 0 ; patient ID from input, whatever inid pointed to

rc = 1

mdc = 2

drg = 3

desc = 4

weight = 5

morp = 6

outver = 7

Chapter 5 DRGFilt 31

Installation

To install DRGFilt, you put the DRGFilt executable in a directory
in the users’ search path (often /usr/local/bin), and you put the
masks file(s) and control file(s) in a directory which is readable by
the users (often /usr/local/drggrouper or /usr/share/drggrouper).

Typical Scenario

How is DRGFilt ususally used? Here is the typical scenario:

1. A database administrator (DBA) changes the database
schema to include a DRG for every record (and perhaps
other DRGFilt outputs as well, often the return code and
version).

2. The DBA exports a dataset from a database management
system, creating the file which is input to DRGFilt. Let us
call this file "the export file."

3. An analyst creates or customizes a control file for DRGFilt
which matches the format of the export file.

4. A programmer or power user runs the export file through
DRGFilt which creates output, which we will call "the re-
sults file."

5. The DBA imports the results file, overwriting the contents
of the database.

And, voila! every record now has a DRG assigned to it.

Super Control File

Here is the control file we use to exercise every DRGFilt feature,
which should give you examples of all the new features:

; new format DRGFilt control file, with different groups for different purposes

;---------------

; this group is to process the standard fixed-width input file from CMS

;---------------

32 DRGGroupers.net

[fixed]

format = fixed ; input file format

verbose = 0 ; no debugging information

blip = 1000 ; give progress report every 1,000 records

blipeol = 0 ; 1=newline for progress report, 0=carriage return

batchver = 33 ; assign version 33 DRGs to this batch

maskdir = . ; directory in which to find drgmasks.v33

; fixed-width input variables: name = length@offset

age = 3@0

sex = 1@3

ds = 2@4

dxl=8 ; dx length does not require an offset

poa= 7

dx = 200@23

sgl=7@0 ; pr length, offset is optional & ignored

surg= 175@223

exmp = 1@6

; -----

; these are already present from the CMS grouper:

; you could overwrite the incoming values if you wanted to

; drg = 3@603

; mdc = 2@600

; rc = 2@598

; -----

; these are written out by DRGFilt

rc = 2@1760

mdc = 2@1762

drg = 3@1764

;---------------

; this group is to validate date-handling of a CSV

;---------------

[csv-adt]

format = csv (,) ; separator character is in parens

base = 0 ; field indices are zero-based, as opposed to 1-based, etc

inheaders = 1 ; 1=input column headers, 0=no input column headers

outheaders = 1 ; 1=want column headers, 0=no column headers

crlf = 0 ; type of end-of-line: 0=crlf (DOS), 1=lf (Unix)

blip = 1000 ; give progress report every 1,000 records

maskdir = . ; directory in which to find drgmasks.v33

batchver = 33 ; the DRG version to apply to this entire batch

infile = adt.csv ; input file name

Chapter 5 DRGFilt 33

outfile = x.csv ; output file name

;outfile = blank file.csv

verbose = 1 ; give debugging output

; input variables: name = index

inid = 0

bdt = 1

sex = 2

exmp = 3

ds = 4

; these there keywords are allowed to have lists as parameters.

; lists can contain single entries, ranges, or both. for example

; 1,2,7-22,50

dx = 5-29

poa = 30-54

surg= 55-79

adt = 80

; calcver gives the index of a field to be used as the date from which

; we calculate the appropriate DRG version. If any record’s calculated

; DRG version does not match the batchver, we skip that record

calcver = 80 ; NOTE: same index as "adt" because we are using the same field

; these are written out by DRGFilt

outid = 0 ; patient ID from input, whatever inid pointed to

rc = 1

mdc = 2

drg = 3

desc = 4

weight = 5

morp = 6

outver = 7

;---------------

; this group is to process the CSV we created from the standard fixed-width input file from CMS

;---------------

[csv]

format = csv (,) ; separator character is in parens

base = 0 ; indices are zero-based

;base = 1 ; indices are one-based

inheaders = 1 ; 1=input column headers, 0=no input column headers

outheaders = 1 ; 1=want column headers, 0=no headers

crlf = 0 ; type of end-of-line: either crlf or lf

blip = 1000

batchver = 33

34 DRGGroupers.net

maskdir = .

infile = testdbv33.csv

outfile = testdb.out.csv

; input variables: name = index

inid = 0

age = 1

sex = 2

exmp = 3

ds = 4

dx = 5-29

poa = 30-54

surg= 55-79

; these are written out by DRGFilt

outid = 0 ; patient ID from input

rc = 1

mdc = 2

drg = 3

desc = 4

weight = 5

morp = 6

outver = 7

;---------------

; this group is to process the CSV we created from the standard fixed-width input file from CMS

;---------------

[csv-validate]

format = csv (,) ; separator character is in parens

base = 0 ; indices are zero-based

;base = 1 ; indices are one-based

inheaders = 1 ; 1=input column headers, 0=no input column headers

outheaders = 0 ; 1=want column headers, 0=no headers

crlf = 0 ; type of end-of-line: either crlf or lf

blip = 1000

blipeol = 0 ; 1=newline for progress report, 0=carriage return

maskdir = .

batchver = 33

infile = testdbv33.csv

outfile = testdb.validate.csv

verbose = 1

; input variables: name = index

inid = 0

Chapter 5 DRGFilt 35

age = 1

sex = 2

exmp = 3

ds = 4

dx = 5-29

poa = 30-54

surg= 55-79

; these are written out by DRGFilt

outid = 0 ; patient ID from input

drg = 1

; this group was added to support drgfilt-as-CGI helper

[cgi]

verbose = 0;

format = csv (ˆ) ; separator character is in parens

base = 0 ; indices are zero-based

inheaders = 0 ; 1=input column headers, 0=no input column headers

outheaders = 0 ; 1=want column headers, 0=no headers

crlf = 0 ; type of end-of-line: either crlf or lf

blip = 1 ; want something in the log

blipeol = 1 ; 1=newline for progress report, 0=carriage return

batchver = 33

maskdir = /var/www/cgi-bin/drgstuff

log = /tmp/me.out

; input variables: name = index

inid = 0

age = 1

sex = 2

exmp = 3

ds = 4

dx = 5-29

poa = 30-54

surg= 55-79

; these are written out by DRGFilt

rc = 0

mdc = 1

drg = 2

outver = 3

weight = 4

mean = 5

morp = 6

36 DRGGroupers.net

desc = 7

dflg = 8 ; string of flags for which dx codes were used

sflg = 9 ; string of flags for which pr codes were used

; eof

Chapter 6 Excel-DRG 37

Excel-DRG

Excel-DRG is for end users who are comfortable using Microsoft
Excel and whose data is either already in a spreadsheet or can be
put into a spreadsheet.

If you are not comfortable using Excel or if you cannot easily get
your data into and out of spreadsheets then Excel-DRG is not for
you.

Note: as of version 26, released in 2008, the DRG version can have
either a ’p’ or an ’e’ or both appended to it. If there is a trailing ’p’,
it is assumed that the last character of every diagnosis code is a
POA flag. If the there is a trailing ’e’, then the source institution is
presumed to be exempt from the HAC. Thus "26p" specifies POA
support, while "26" does not.

"25p" does not make sense because before version 26, there was no
POA or HAC concept.

"26pe" specifies POA support (ie there are flag) but that the institu-
tion is exempt.

If you specify a version after 26 and you do not want POA and
HAC support, it is safer to specify "XXe" rather than just "XX", eg
"30e" instead of just "30".

Requires the DLL and Masks

Excel-DRG depends on our DLL for Visual BASIC and our masks
files, both of which are included in the initial purchase price.

Note that you will have to refer to the chapter on the Grouper DLL
for information about return codes, inputs and outputs.

Staying Current

Because Excel-DRG calls our DLL to do the actual grouping, you
can keep it up-to-date by buying a new DLL every year and leaving
Excel-DRG alone, assuming that the DLL API remains the same.

38 DRGGroupers.net

Technical Details

Excel-DRG is a Microsoft® Excel spreadsheet and macro which
calls our Grouper DLL on every row. The results of the DLL call
populate columns in the spreadsheet.

Our grouper DLL has the same inputs and outputs as all our other
groupers. For details about how our groupers work, see chapter 2,
"DRG Assignment Software." In particular, there is a section on in-
puts to our grouper and its outputs.

Typically, the user makes a copy of the original spreadsheet and
works with the copy for every grouping project. The user then
pastes or imports her data into the copy, sets the version column
and calls the macro.

Columns of the Spreadsheet

The following is a brief description of the various columns of the
spreadsheet.

Column A: ID Number

This column exists to link this data to your original dataset. A bet-
ter name would have been "primary key".

Column B: Age

Required grouper input. See Chapter two for details.

Column C: Sex

Required grouper input. See Chapter two for details.

Chapter 6 Excel-DRG 39

Column D: Discharge Disposition

Required grouper input. See Chapter two for details.

Column E: Exempt flag

Required grouper input. See Chapter two for details.

Column F-AD: Diagnoses

Up to twenty-five diagnosis codes. Required grouper input. See
Chapter two for details.

Column AE-BC: POA flags

Up to twenty-five Present On Admission codes, corresponding to
the diagnosis codes: the first POA is for the first diagnosis code,
the second POA is for the second diagnosis code, and so on. Re-
quired grouper input. See Chapter two for details.

Column BD-CB: Procedures

Up to twenty-five procedure codes. Required grouper input. See
Chapter two for details.

Column CC: DRG Version

Required grouper input. See Chapter two for details.

Column CD: Use POA indicator

Tells the grouper whether or not to expect POA flags. See Chapter
two for details.

40 DRGGroupers.net

Column CE: DRG

Optional grouper output.

Column CF: DRG Description

Optional grouper output.

Column CG: Grouper Return Code

Optional grouper output.

Column CH: MDC

Optional grouper output.

Column CI: DRG Weight

Optional grouper output

Column CJ: GMLOS

GMLOS stands for "Geometric Mean Length of Stay" and is often
abbreviated to just "LOS". Optional grouper output.

Detailed Instructions

Open your copy of mhdrgvb33.xls. The spreadsheet contains the
CMS test dataset. Before deleting these rows and populating the
spreadsheet with your own data, we recommend that you try to
group the test records. To do this, hit Ctrl-Shift-D (for DRG). You
should hear a beep and see a message that the records were
grouped. Next, you can delete these rows. DO NOT ADD
COLUMNS, DELETE COLUMNS, OR MOVE COLUMNS!
Next, populate the spreadsheet with your own data following the
format specified by the first row (column headers). Once you have
copied your data into the spreadsheet, run the grouper by hitting
Ctrl-Shift-D.

Chapter 6 Excel-DRG 41

Installation

Excel-DRG is delivered as a zip file. In the zip file you will find:

1. mhdrgvb33.xls (the spreadsheet itself)

2. vbdrgv33.exe (windows installer for the DLL)

In order for the Excel grouper to work, you must install both the
DLL (which automatically installs the masks file) and the Excel
spreadsheet. Double-click on mhdrgvb.exe to install the DLL.
Double-click on vbdrgv33.exe to install both DLL and the masks
file.

Once those are installed, you can populate the spreadsheet with
discharge data and run the Grouper. We highly recommend that
you copy mhdrgvb33.xls and use the copy as your working spread-
sheet.

42 DRGGroupers.net

Access-DRG

Access-DRG is an interactive grouper.

Access-DRG is for Microsoft® Access users who are comfortable
using MS-Access and whose data is either already in an MS-Ac-
cess database or can be put into an MS-Access database.

If you are not comfortable using MS-Access or if you cannot easily
get your data into and out of MS-Access databases, then Access-
DRG is not for you.

Note: as of version 26, released in 2008, the DRG version can have
either a ’p’ or an ’e’ or both appended to it. If there is a trailing ’p’,
it is assumed that the last character of every diagnosis code is a
POA flag. If the there is a trailing ’e’, then the source institution is
presumed to be exempt from the HAC. Thus "26p" specifies POA
support, while "26" does not. "25p" does not make sense.

Note: as of version 33, released in 2015, our API was expanded to
include an exempt flag and a POA indicator. See the appendix enti-
tled "What’s New" for details.

Requires the DLL and Masks

Access-DRG depends on our DLL for Visual BASIC and our
masks files, both of which are included in the initial purchase
price.

Staying Current

Because Access-DRG calls our DLL to do the actual grouping, you
can keep it up-to-date by buying a new DLL every year and leaving
Access-DRG alone.

Note: as of version 33, you may require an update to Access-DRG
in order to assign DRGs to versions other than the version which
was current when you made the purchase.

Chapter 7 Access-DRG 43

Technical Details

Access-DRG is a Microsoft® Access database and VBA module
which calls our Grouper DLL on every row. The results of the DLL
call populate columns in the database.

Our grouper DLL has the same inputs and outputs as all our other
groupers. For details about how our groupers work, see chapter 2,
"DRG Assignment Software." In particular, there is a section on in-
puts to our grouper and its outputs.

Typical Usage

Typically, one populates the database in Access-DRG however one
likes (text file importation, ODBC calls, etc) and then fills in the
form and then pushes the button to assign DRGs to every row.

After the DRG assignment has taken place, the DRGs are available
either for export or for dynamic access.

44 DRGGroupers.net

Grouper DLL

The Grouper DLL is a programmer’s tool.

The DLL is the standard core grouping engine wrapped in a
Win32-friendly package. This means that the DLL takes essentially
the same input as every other grouping product and gives essential-
ly the same output. Therefore you can use technical information
provided about the inputs and outputs of the other grouping prod-
ucts and apply that information to this product.

Sadly, C and BASIC have different function calling conventions.
This means that a DLL compiled for C cannot be used by BASIC.
Thus all our DLLs come in two flavors. Please be sure that you or-
der the right one.

Choose the VB-Callable DLL (vbdrgv33.dll) to run with Access
and Visual BASIC applications.

Choose the C-Callable DLL (mhdrg.dll) to run with applications
created with Visual C++ (or some other Win32 C compiler).

Note: as of version 26, released in 2008, the DRG version can have
either a ’p’ or an ’e’ or both appended to it. If there is a trailing ’p’,
it is assumed that the last character of every diagnosis code is a
POA flag. If the there is a trailing ’e’, then the source institution is
presumed to be exempt from the HAC. Thus "26p" specifies POA
support, while "26" does not. "25p" does not make sense.

Staying Current

In order to stay up-to-date you have to buy a new one every year,
which includes the appropriate masks file.

Technical Details

The Grouper DLL is a Win32 Dynamic Link Library, written in
ANSI C and compiled either for use with Visual BASIC software
or for use with Visual C++ software.

Chapter 8 Grouper DLL 45

Distribution

The Grouper DLL is distributed with an installer to allow you to
install or uninstall it cleanly.

Calling DLL Functions

Whenever you call a function from a DLL, you must specify the
following:

1. the name of DLL file

2. the function prototype, ie what arguments the function
takes as input and what result the function gives as output.

The syntax for specifying this information varies from program-
ming language to programming language, but the essential infor-
mation to be conveyed is the same across all programming lan-
guages.

VB Example: DECLARE

In Visual BASIC, the statement you need is the DECLARE state-
ment. Refer to the documentation that came with your VB compil-
er for details.

Here is a DECLARE statement that worked for us in VB 5:

1: Private Declare Function mhicd Lib "mhicdvb.dll" (_

2: ByVal which As String, _

3: ByVal file As String, ByVal code As String, _

4: ByVal retval As String, _

5: ByVal length As Integer) As Integer

All five lines are actually a single statement; the underscores at the
end are continuation marks.

Line 1 specifies the DLL (mhicdvb.dll) and the function name
(mhicd).

46 DRGGroupers.net

Line 2 specifies that the first argumeent to mhicd() is called
"which", is passed by value and is a string.

Line 3 specifies that the second argumeent to mhicd() is called
"file", is passed by value and is a string.

Line 4 specifies that the third argumeent to mhicd() is called "ret-
val", is passed by value and is a string.

Line 5 specifies that the fourth argumeent to mhicd() is called
"length", is passed by value and is an integer. This line also speci-
fies that mhicd() itself returns an integer value.

C Example: Linking

The ways in which DLLs are exposed to applications varies be-
tween different C, or Visual C++, or C# implementations. You will
have to consult the documentation for your particular environment
for the details of calling out to DLL functions from your software.

We use LCC-Win32 and in this environment, the secret is all in the
linking:

lc -ansic tryit.c mhdrg.lib mhicd.lib -o tryit.exe

Note the references to mhdrg.lib and mhicd.lib; these are stubs
which allow the application to call out mhdrg.dll and mhicd.dll re-
spectively.

VB DLL API

The Application Program Interface (API) describes how to call the
various functions in the DLL. The API described in this section is
the VB-callable DLL or the C-callable DLL.

Chapter 8 Grouper DLL 47

MHDLLVER

The function mhdllver() is provided to give the programmer access
to both the highest support DRG version and the internal versions
of the DLL itself and its grouper logic.

Dim VerStr As String * 80

Dim MaxVer As Integer

’get the DLL version

MaxVer = mhdllver(VerStr, 79)

There are two parameters: a buffer into which to put the version
string and a maximum length of that buffer. Note that you have to
allocate the memory for the buffer outside the call because this
function does not allocate memory for you.

In Visual BASIC, this means using the DIM command with an ex-
plicit length.

MHDRG

In-place assignment means that a function takes a point to a vari-
able in the main program and then sets the variable in the main
program through that pointer. The alternative is returning a value to
the main program.

The function mhdrg() actually assigns the DRG and returns the re-
sults. In order to return multiple values from a single function call,
this function does mostly in-place assignment. In-place assignment
requires that the DECLARE statement for this function NOT use
the BYVAL keyword for these parameters

In order to get around the different ways in which different envi-
ronments handle binary numbers, most of the parameters are
strings even if they represent numbers. Thus patient age is a string,
not an integer.

ReturnCode = mhdrg(drg, mdc, myver, masksdir,_

mydstat, myage, mysex, mydxbuf, mypxbuf)

48 DRGGroupers.net

There are eight parameters:

1. a pointer to an integer into which to put the DRG;

2. a pointer to an integer into which to put the MDC; ***
NEW IN V30 RE-RELEASE: MDC IS NOW SOME-
TIMES DEPENDANT ON THE THE PRIMARY DIAG-
NOSIS AND SO MUST BE RETURNED AS PART OF
THE DRG ASSIGNMENT *** If the DRG has the pre
MDC, which we represent as 0, then mhinfo() will return 0
for that DRG, but you will not know the particular MDC
for any giv en instance of that DRG. *** NEW IN V31 RE-
LEASE: mhinfo() NOW LEAVES THE MDC VALUE AS-
IS, FOR BACKWARD COMPATIBILITY.

3. a pointer to a string into which to put the DRG version;

4. a pointer to a string into which holds the full path to the di-
rectory in which to find the masks files;

5. a pointer to a string into which holds the Discharge Status;

6. a pointer to a string which holds the patient age;

7. a pointer to a string which holds the patient sex (1=male,
2=female, 0=unknown);

8. a pointer to a string which holds the diagnosis codes, sepa-
rated by commas *** NEW IN V30 RE-RELEASE: VB-
callable DLL diagnosis string ends with ’ˆ’ and each code
can end with a tilde (˜) and then the POA flag

9. a pointer to a string which holds the procedure codes, sepa-
rated by commas *** NEW IN V30 RE-RELEASE: VB-
callable DLL procedure string ends with ’ˆ’

Note: as of version 26, released in 2008, the DRG version can have
either a ’p’ or an ’e’ or both appeneded to it. If there is a trailing
’p’, it is assumed that the last character of every diagnosis code is a
POA flag. If the there is a trailing ’e’, then the source institution is
presumed to be exempt from the HAC. Thus "26p" specifies POA
support, while "26" does not.

Chapter 8 Grouper DLL 49

"25p" does not make sense because before version 26, there was no
POA or HAC concept.

"26pe" specifies POA support (ie there are flag) but that the institu-
tion is exempt.

If you specify a version after 26 and you do not want POA and
HAC support, it is safer to specify "XXe" rather than just "XX", eg
"30e" instead of just "30".

Return Code -1

The DLL has a special return code: minus 1 (-1). This code is a
generic "initialization failure" code, denoting any of the following
conditions:

• missing "sex" parameter

• missing "age" parameter

• missing "version" parameter

• missing "masks path" parameter

• "version" parameter < lowest supported version or > highest
supported version

VB Sample Code

What follows is a chunk of Visual BASIC which calls our Grouper
DLL:

Option Explicit

Private Declare Function mhdllver Lib "vbdrgv33.dll" (ByVal Buf As String, _

ByVal BufLen As Integer) As Integer

Private Declare Function mhdrg1 Lib "vbdrgv33.dll" (drg As Integer, _

ByVal DRGVersion As String, ByVal MasksPath As String, ByVal DischStat As String, _

ByVal PtAge As String, ByVal PtGender As String, ByVal DXList As String, _

ByVal ProcList As String, ByVal POAPresent As String, ByVal ExemptFlag As String) As Integer

Private Declare Sub mhinfo Lib "vbdrgv33.dll" (ByVal drg As Integer, _

ByVal DRGVersion As String, ByVal MasksPath As String, ByRef mdc As Integer, _

50 DRGGroupers.net

weight As Double, los As Double, ByVal Desc As String, ByVal DescLen As Integer)

Private Declare Function mhdrgver Lib "vbdrgv33.dll" (ByVal MPath As String, _

ByVal Buf As String, ByVal BufLen As Integer) As Integer

Private Declare Sub mherrdesc Lib "vbdrgv33.dll" (ByVal errBuffer As String, ByVal errLength As Integer)

Public Function AssignDRG()

On Error GoTo Err_Group

Dim ReturnCode As Integer

Dim drg As Integer, mdc As Integer

Dim Desc As String * 80

Dim weight As Double, los As Double

Dim masksdir As String

Dim myver As String, mydstat As String, myage As String, mysex As String, myexempt As String, mypoa As String

Dim mydxbuf As String * 256

Dim mypxbuf As String * 256

Dim tempStr As String

Dim N As Integer, needcomma As Integer

Dim Val As String

Dim NumRecords As Long, NumErrors As Long

Dim LastRow As Long

Dim MyID As Long ’user’s record number

Dim myWS As Object

Application.ScreenUpdating = False

Application.Cursor = xlWait

’start in first row, DRG column

Range("CE2").Select

NumRecords = 0

NumErrors = 0

’get the path to the masks directory out of the registry, if you can

masksdir = "C:Program FilesndHsks

Set myWS = CreateObject("WScript.Shell")

tempStr = myWS.RegRead("HKLMtwarendH0 If Len(tempStr) > 0 Then

masksdir = tempStr & "sks

End If

’loop through records making sure DRG info is blank

’first, find last row

Do Until IsEmpty(ActiveCell.Offset(0, -81).Range("A1").Value) = True

ActiveCell.Offset(1, 0).Range("A1").Select

Loop

Chapter 8 Grouper DLL 51

’select DRG columns and all populated rows

LastRow = ActiveCell.Row

LastRow = LastRow - 1

Range("CE2:CJ" & LastRow).Select

’clear selection

Selection.ClearContents

Range("CE2").Select

’loop through records assigning drg info

Do Until IsEmpty(ActiveCell.Offset(0, -82).Range("A1").Value) = True

myver = ActiveCell.Offset(0, -2).Range("A1").Value

MyID = ActiveCell.Offset(0, -82).Value

’abort if version is blank

If myver = "" Then

MyID = ActiveCell.Offset(0, -82).Value

MsgBox "Version is empty for record # " & MyID & ". Cannot group.", vbOKOnly, "Missing Version"

NumErrors = NumErrors + 1

GoTo NextOne

End If

myexempt = ActiveCell.Offset(0, -79).Range("A1").Value

mydstat = ActiveCell.Offset(0, -78).Range("A1").Value

mysex = ActiveCell.Offset(0, -80).Range("A1").Value

myage = ActiveCell.Offset(0, -81).Range("A1").Value

mypoa = ActiveCell.Offset(0, -1).Range("A1").Value

’Loop through controls, getting their current values

’make string out of the diagnosis codes

tempStr = ""

needcomma = 0

For N = -77 To -53

Val = ActiveCell.Offset(0, N).Range("A1").Value

If Len(Val) > 0 Then

’append POA flag, if present

If ActiveCell.Offset(0, N + 25).Value <> "" Then

Val = Val & "˜" & ActiveCell.Offset(0, N + 25).Range("A1").Value

End If

If needcomma <> 0 Then

tempStr = tempStr & ","

End If

52 DRGGroupers.net

needcomma = 1

tempStr = tempStr & Val

End If

Next N

mydxbuf = tempStr & "ˆ" ’ explicit end-of-data marker

’make string out of the procedure codes

tempStr = ""

needcomma = 0

For N = -27 To -3

Val = ActiveCell.Offset(0, N).Range("A1").Value

If Len(Val) > 0 Then

If needcomma <> 0 Then

tempStr = tempStr & ","

End If

needcomma = 1

tempStr = tempStr & Val

End If

Next N

mypxbuf = tempStr & "ˆ" ’ explicit end-of-data marker

’call the M+H grouper with what you got

ReturnCode = mhdrg1(drg, myver, masksdir, mydstat, myage, mysex, mydxbuf, mypxbuf, mypoa, myexempt)

ActiveCell.Offset(0, 2).Range("A1").Value = ReturnCode

If ReturnCode <> 0 Then ’drg assignment failed, alas!

Call mherrdesc(Desc, 80)

ActiveCell.Offset(0, 0).Range("A1").Value = drg

ActiveCell.Offset(0, 1).Range("A1").Value = Desc

NumErrors = NumErrors + 1

Else ’drg assignment worked, hurray!

’get the particulars of this DRG from M+H dll

Call mhinfo(drg, myver, masksdir, mdc, weight, los, Desc, 80)

ActiveCell.Offset(0, 0).Range("A1").Value = drg

ActiveCell.Offset(0, 1).Range("A1").Value = Desc

ActiveCell.Offset(0, 3).Range("A1").Value = mdc

ActiveCell.Offset(0, 4).Range("A1").Value = weight

ActiveCell.Offset(0, 5).Range("A1").Value = los

End If

NextOne:

ActiveCell.Offset(1, 0).Range("A1").Select

NumRecords = NumRecords + 1

Loop

Application.ScreenUpdating = True

Chapter 8 Grouper DLL 53

Application.Cursor = xlDefault

Range("CE2").Select

Beep

MsgBox NumRecords & " records were grouped with " & NumErrors & " error(s)."

Exit_Group:

Exit Function

Err_Group:

Application.Cursor = xlDefault

MsgBox Err.Number & "-" & Err.Description

Range("CE2").Select

Resume Exit_Group

End Function

C Sample Code

What follows is a trivial C program which calls our Grouper DLL:

/* tryit.c (c) 2002 M+H Consulting, LLC C-callable demo (BFH) */

/* Thu Oct 8 19:22:54 EDT 2015 BFH update for v33 */

/* Tue Nov 18 11:52:33 EST 2014 BFH test case for huron debugging */

/* Sun Oct 14 18:08:14 EDT 2012 BFH test case for v30 bug */

/* Sun Oct 3 11:57:46 EDT 2010 BFH support f28 */

/* 10/06/2008 made win32 and unix versions the same */

/* 10/11/2003 added bit-string of used dx’s and used procedures */

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#define DELIM "ˆ"

#define RETURNED 10

#define DRGVER "v33p"

#ifdef WIN32

/* standard library function */

extern char * strtok(char *, char *);

/* DLL functions */

54 DRGGroupers.net

//extern int mhicd(); /* mhicd.dll */

extern char * mhdrg1(char *, char *, char *, char *, char *, char *, char *, int, int, char *, char *);

extern char * mherrdesc(void); /* cdrgv33.dll */

#else

extern char * errdesc(); /* cdrgv33.dll */

extern char * mherrdesc(void); /* cdrgv33.dll */

extern char * mhdrg1(); /* cdrgv33.dll */

#endif

int main() {

char * retval;

char * p;

char * a[RETURNED];

char * expected;

int i;

expected = "DRG: 614 MDC: 10 GRC: 00";

/* call the grouper, store results in reval */

retval = mhdrg1(

DRGVER, /* which DRG version you want */

#ifdef WIN32

"/mnh/dev/dll-i10/v33", /* path to masks files */

#else

"/drbd/mnh/src/SWIG", /* path to masks files */

#endif

"1", /* discharge status */

"55", /* patient age on admission */

"1", /* patient sex (1=male, 2=female) */

/* ICD DX codes */

//"D352 YE2740 NN390 YE871 NF05 NR630 NR110 YR0602 YD649 ",

"B5881 YI2101 ",

/* ICD procedure codes */

//"0GB00ZZ0YUY47Z02HR30Z0L8S3ZZ0P5N0ZZ0RJP0ZZ",

"021009302UG3JZ",

8, /* length of each ICD DX code */

7, /* length of each ICD procedure code */

"y", /* there are POA flags */

"0" /* this case is not exempt from HAC rules */

);

/* if there was an error, alert the user */

if (retval == NULL) {

#ifdef WIN32

Chapter 8 Grouper DLL 55

printf("M+H grouper argument or environment error: %s0, mherrdesc());

#else

printf("M+H grouper argument or environment error: %s0, errdesc());

#endif

exit(-1);

}

/* show the raw return value */

printf("Raw return value from mhdrg1:55s0,retval);

/* deconstruct return from mhdrg1() */

p = (char *) strtok(retval,DELIM);

for (i = 0; i < RETURNED && p != NULL; i++) {

a[i] = p;

p = (char *) strtok(NULL,DELIM);

}

/* last two return values are bit-strings of which ICD codes were

* used in the grouping

*/

puts("Deconstructed return value from mhdrg1:");

printf("rc=%s, mdc=%s, drg=%s, ovn=%s, weight=",a[0],a[1],a[2],a[3]);

#ifdef OLD_WAY

printf("%s, mean=%s, porm=%s0esc=%s0x flags:%ld, px flags: %ld0,a[4],a[5],a[6],a[7],dxu,pxu);

#else

printf("%s, mean=%s, porm=%s0esc=%s0x flags:%s, px flags: %s0,a[4],a[5],a[6],a[7],a[8],a[9]);

#endif

/* show what we should get */

printf("0xpected result: %s0,expected);

/* last two return values are bit-strings of which ICD codes were used in the grouping */

puts("0ignificant ICD codes:");

#ifdef OLD_WAY

for (mask = 1L,i = 0; i < 32; i++, mask *= 2L) {

if (mask & dxu) {

printf(" * DX code %2d was used0,(i+1));

}

}

for (mask = 1L,i = 0; i < 32; i++, mask *= 2L) {

if (mask & pxu) {

printf(" * Proc code %2d was used0,(i+1));

}

56 DRGGroupers.net

}

#else

p = a[8];

for (i = 0; i < 32 && p[i] != ’ 00’; i++) {

if (p[i] == ’1’) {

printf(" * DX code %2d was used0,(i+1));

}

}

p = a[9];

for (i = 0; i < 32 && p[i] != ’ 00’; i++) {

if (p[i] == ’1’) {

printf(" * Proc code %2d was used0,(i+1));

}

}

#endif

exit(0);

}

/* This program should produce the following output:

Raw return value from mhdrg1:

0ˆ15ˆ391ˆ21ˆ0.1536ˆ3.10ˆMˆNORMAL NEWBORN

Deconstructed return value from mhdrg1:

rc=0, mdc=15, drg=391, ovn=21, weight=0.1536, mean=3.10, porm=M

desc=NORMAL NEWBORN

dx flags:1, px flags: 0

Significant ICD codes:

* DX code 1 was used

*/

/* eof */

Chapter 10 Perl Shared Object 57

Perl Shared Object

The Perl shared object is a programmer’s tool. If you want to in-
clude this product as part of software that you sell or lease outside
your organization, you will need a Reseller’s License. Please refer
to Appendix D for details.

Since the Perl shared object (SO) is a compiled object, it is plat-
form-specific. You have to buy the Perl SO that was compiled for
your specific platform. Currently, we only supply the SO under
UNIX and UNIX-derived operating systems.

We use an outside porting lab named Ready to Run to provide us
with UNIX platforms on which to develop and test, so for an up-to-
date list of UNIX variants that we support, please see their web
site:

www.rtr.com

Note: as of version 26, released in 2008, the DRG version can have
either a ’p’ or an ’e’ or both appended to it. If there is a trailing ’p’,
it is assumed that the last character of every diagnosis code is a
POA flag. If the there is a trailing ’e’, then the source institution is
presumed to be exempt from the HAC. Thus "26p" specifies POA
support, while "26" does not. "25p" does not make sense.

Staying Current

In order to stay up-to-date you have to buy a new Perl SO every
year.

Technical Details

The Perl SO is an interface, written in ANSI C, from which a
wrapper was created with SWIG, an open source project to support
wrapper generation.

58 DRGGroupers.net

Distribution

The Perl SO is distributed as a file to be installed in the appropriate
directory with the appropriate permissions. Since the directory in
which the Perl intepreter looks for shared objects varies from in-
stallation to installation, we cannot give precise installation instruc-
tions.

Calling Perl SO Functions

To call a function in a Perl SO all you have to do is load the SO
with the Perl "use" command. Then you can call functions within
the SO as if the SO were a Perl package.

Sample Perl Code

What follows is a test program we use to make sure that the Perl
SO is working. The package in which the Perl SO is wrapped is
called called ’mhdrg’.

The call to mhdrg1() should be self-explanatory. You will, of
course, have to substitute the correct version number, path to
masks files and grouper inputs and output for your installation and
your specific data.

mhdrg1() takes the usual inputs and gives the usual outputs. For
details about how our groupers work, see chapter 2, "DRG Assign-
ment Software." In particular, there is a section on inputs to our
grouper and its outputs.

tryit.pl (c) 2002 M+H Consulting, LLC MH DRG test script

Sun Oct 14 18:32:29 EDT 2012 BFH v30 bug test case

Wed Sep 14 06:53:33 EDT 2011 BFH command line option to use source dir for masks

use perldrgv33; # M+H DRG package

$ver = "v33p";

$expected = "DRG: 614 MDC: 10 GRC: 00";

call grouper, store results in $retval

$retval = mhdrg1(

$ver, # which DRG version you want

"/drbd/mnh/src/SWIG", # path to masks files

Chapter 10 Perl Shared Object 59

"1", # discharge status */

"55", # patient age on admission */

"2", # patient sex (1=male, 2=female) */

ICD DX codes */

"D352 YE2740 NN390 YE871 NF05 NR630 NR110 YR0602 YD649 ",

ICD procedure codes */

"0GB00ZZ0YUY47Z02HR30Z0L8S3ZZ0P5N0ZZ0RJP0ZZ",

8, # length of each ICD DX code */

7, # length of each ICD procedure code */

"1", # are there POA flags?

"n", # is this case exempt?

);

if there was an error, alert the user

if ($retval eq ’’) {

$msg = "M+H grouper argument or environment error: " . perldrgv33::errdesc();

print STDOUT $msg;

die $msg;

}

just for prettiness, remove trailing blanks

$retval =˜ s/;

show the raw return value

printf STDOUT ("Raw return value from mhdrg1:59s0,$retval);

deconstruct return from mhdrg1()

($rc,$mdc,$drg,$ovn,$weight,$mean,$porm,$desc,$dxflags,$pxflags) = split(//,$retval,-1);

print STDOUT "Deconstructed return value from mhdrg1:0;

print STDOUT "rc=$rc, mdc=$mdc, drg=$drg, ovn=$ovn, weight=";

print STDOUT "$weight, mean=$mean, porm=$porm0esc=$desc,dxflags=$dxflags,pxflags=$pxflags0;

print STDOUT "EXPECTED: $expected0;

exit(0);

60 DRGGroupers.net

PHP Shared Object

The PHP shared object is a programmer’s tool. If you want to in-
clude this product as part of software that you sell or lease outside
your organization, you will need a Reseller’s License. Please refer
to Appendix D for details.

Since the PHP shared object (SO) is a compiled object, it is plat-
form-specific. You have to buy the PHP SO that was compiled for
your specific platform. Currently, we only supply the SO under
UNIX and UNIX-derived operating systems.

We use an outside porting lab named Ready to Run to provide us
with UNIX platforms on which to develop and test, so for an up-to-
date list of UNIX variants that we support, please see their web
site:

www.rtr.com

Note: as of version 26, released in 2008, the DRG version can have
either a ’p’ or an ’e’ or both appended to it. If there is a trailing ’p’,
it is assumed that the last character of every diagnosis code is a
POA flag. If the there is a trailing ’e’, then the source institution is
presumed to be exempt from the HAC. Thus "26p" specifies POA
support, while "26" does not. "25p" does not make sense.

Staying Current

In order to stay up-to-date you have to buy a new PHP SO every
year.

Technical Details

The PHP SO is an interface, written in ANSI C, from which a
wrapper was created with SWIG, an open source project to support
wrapper generation.

Chapter 11 PHP Shared Object 61

Distribution

The PHP SO is distributed as a file to be installed in the appropri-
ate directory with the appropriate permissions. Since the directory
in which the PHP intepreter looks for shared objects varies from
installation to installation, we cannot give precise installation in-
structions.

Calling PHP SO Functions

To call a function in a PHP SO all you have to do is load the SO
with the PHP "dl" command. Then you can call functions within
the SO as if the SO were a PHP package.

In our case, we use the following idiom that we found on the Inter-
net:

if (!extension_loaded(’mhdrg’)) {

if (!dl(’mhdrg.so’)) { // this should be in a protected directory

exit;

}

}

Sample PHP Code

What follows is a test program we use to make sure that the PHP
SO is working. The package in which the PHP SO is wrapped is
called called ’mhdrg’.

The call to mhdrg() should be self-explanatory. The rules for call-
ing mhdrg() are the same in Perl or PHP, so we refer you to the
chapter on the Perl SO for documentation on the mhcall() itself.

mhdrg() takes the usual inputs and gives the usual outputs. For de-
tails about how our groupers work, see chapter 2, "DRG Assign-
ment Software." In particular, there is a section on inputs to our
grouper and its outputs.

<?php

tryit.php (c) 2002 M+H Consulting, LLC MH DRG test script

62 DRGGroupers.net

printf("tryit.php (c) 2002-2015 M+H Consulting, LLC: MH DRG test script");

$ver = "v33p";

if (!extension_loaded(’phpdrgv33’)) {

if (!dl(’phpdrgv33.so’)) { // this should be in a protected directory

printf("<h1>ERROR</h1><p>Could not load phpdrgv33.so...</p>");

exit;

}

}

call grouper, store results in $retval

$retval = mhdrg1(

$ver, # which DRG version you want

"/drbd/mnh/src/SWIG", # path to masks files

"1", # discharge status */

"55", # patient age on admission */

"2", # patient sex (1=male, 2=female) */

ICD DX codes */

"D352 YE2740 NN390 YE871 NF05 NR630 NR110 YR0602 YD649 ",

ICD procedure codes */

"0GB00ZZ0YUY47Z02HR30Z0L8S3ZZ0P5N0ZZ0RJP0ZZ",

8, # length of each ICD DX code */

7, # length of each ICD procedure code */

"Y", # are there POA indicators?

"n" # is this case exempt?

);

if there was an error, alert the user

if ($retval == ’’) {

$error = errdesc();

print("Error: $error
");

exit;

}

show the raw return value

printf("Raw return value from mhdrg1:
%s

",$retval);

deconstruct return from mhdrg1()

list($rc,$mdc,$drg,$ovn,$weight,$mean,$porm,$desc) = explode("ˆ",$retval,-1);

print("Deconstructed return value from mhdrg1:
");

print("rc=$rc, mdc=$mdc, drg=$drg, ovn=$ovn, weight=");

print("$weight, mean=$mean, porm=$porm
desc=$desc
");

print(" EXPECTED: RC: 0 MDC: 10 DRG: 614
");

exit;

Chapter 11 PHP Shared Object 63

?>

64 DRGGroupers.net

C-Callable Object

The C-Callable object is a programmer’s tool. If you want to in-
clude this product as part of software that you sell or lease outside
your organization, you will need a Reseller’s License. Please refer
to Appendix D for details.

Since the C-Callable object (CO) is a compiled object, it is plat-
form-specific. You have to buy the CO that was compiled for your
specific platform. Currently, we only supply the CO under UNIX
and UNIX-derived operating systems. For Win32 environments,
we provide the Grouper DLL instead.

We use an outside porting lab named Ready to Run to provide us
with UNIX platforms on which to develop and test, so for an up-to-
date list of UNIX variants that we support, please see their web
site:

www.rtr.com

Note: as of version 26, released in 2008, the DRG version can have
either a ’p’ or an ’e’ or both appended to it. If there is a trailing ’p’,
it is assumed that the last character of every diagnosis code is a
POA flag. If the there is a trailing ’e’, then the source institution is
presumed to be exempt from the HAC. Thus "26p" specifies POA
support, while "26" does not. "25p" does not make sense.

Staying Current

In order to stay up-to-date you have to buy a new CO every year
which comes with the correct masks file.

Technical Details

The CO is written in ANSI C and should link happily into any ex-
ecutable created with any standard UNIX C or C++ or C# compil-
er.

Chapter 12 C-Callable Object 65

Distribution

The CO is distributed as a file to be installed in the appropriate di-
rectory with the appropriate permissions.

Calling CO Functions

To call a function in a CO all you have to do is link your ex-
ecutable with our CO and presto! you can call functions within the
CO as if the CO were a part of your software.

Sample C Code

What follows is a test program we use to make sure that the CO is
working.

The call to mhdrg1() should be self-explanatory. The rules for call-
ing mhdrg1() are the same in Perl or PHP, so we refer you to the
chapter on the Perl CO for documentation on the mhcall() itself.

mhdrg1() takes the usual inputs and gives the usual outputs. For
details about how our groupers work, see chapter 2, "DRG Assign-
ment Software." In particular, there is a section on inputs to our
grouper and its outputs.

/* tryit.c (c) 2002 M+H Consulting, LLC C-callable demo (BFH) */

/* HISTORY:

* Thu Oct 15 08:58:03 EDT 2015 BFH new mhdrg1() API

* Thu Oct 8 19:22:54 EDT 2015 BFH update for v33

* Tue Nov 18 11:52:33 EST 2014 BFH test case for huron debugging

* Sun Oct 14 18:08:14 EDT 2012 BFH test case for v30 bug

* Sun Oct 3 11:57:46 EDT 2010 BFH support f28

* 10/06/2008 made win32 and unix versions the same

* 10/11/2003 added bit-string of used dx’s and used procedures

*/

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#define DELIM "ˆ"

#define RETURNED 10

66 DRGGroupers.net

#define DRGVER "v33"

#ifdef WIN32

/* DLL functions */

extern int mhicd(); /* mhicd.dll */

extern char * mhdrg1(); /* mhdrg.dll */

extern char * mherrdesc(); /* mhdrg.dll */

#else

char * mhdrg1();

extern char * errdesc(); /* mhdrg.dll */

#endif

int main() {

char * retval;

char * p;

char * a[RETURNED];

char * expected;

int i;

expected = "DRG: 614 MDC: 10 GRC: 00";

/* call the grouper, store results in retval */

retval = mhdrg1(

DRGVER, /* which DRG version you want */

"/drbd/mnh/src/SWIG", /* path to masks files */

"1", /* discharge status */

"55", /* patient age on admission */

"1", /* patient sex (1=male, 2=female) */

/* ICD DX codes */

"D352 YE2740 NN390 YE871 NF05 NR630 NR110 YR0602 YD649 ",

/* ICD procedure codes */

"0GB00ZZ0YUY47Z02HR30Z0L8S3ZZ0P5N0ZZ0RJP0ZZ",

8, /* length of each ICD DX code */

7, /* length of each ICD procedure code */

"y", /* are there POA indicators? */

"n" /* is this case exempt from HAC? */

);

/* if there was an error, alert the user */

if (retval == NULL) {

printf("M+H grouper argument or environment error: %s0, errdesc());

exit(-1);

}

Chapter 12 C-Callable Object 67

/* show the raw return value */

printf("Raw return value from mhdrg1:67s0,retval);

/* deconstruct return from mhdrg1() */

p = strtok(retval,DELIM);

for (i = 0; i < RETURNED && p != NULL; i++) {

a[i] = p;

p = strtok(NULL,DELIM);

}

/* last two return values are bit-strings of which ICD codes were

* used in the grouping

*/

puts("Deconstructed return value from mhdrg1:");

printf("rc=%s, mdc=%s, drg=%s, ovn=%s, weight=",a[0],a[1],a[2],a[3]);

#ifdef OLD_WAY

printf("%s, mean=%s, porm=%s0esc=%s0x flags:%ld, px flags: %ld0,a[4],a[5],a[6],a[7],dxu,pxu);

#else

printf("%s, mean=%s, porm=%s0esc=%s0x flags:%s, px flags: %s0,a[4],a[5],a[6],a[7],a[8],a[9]);

#endif

/* show what we should get */

printf("0xpected result: %s0,expected);

/* last two return values are bit-strings of which ICD codes were used in the grouping */

puts("0ignificant ICD codes:");

#ifdef OLD_WAY

for (mask = 1L,i = 0; i < 32; i++, mask *= 2L) {

if (mask & dxu) {

printf(" * DX code %2d was used0,(i+1));

}

}

for (mask = 1L,i = 0; i < 32; i++, mask *= 2L) {

if (mask & pxu) {

printf(" * Proc code %2d was used0,(i+1));

}

}

#else

p = a[8];

for (i = 0; i < 32 && p[i] != ’ 00’; i++) {

if (p[i] == ’1’) {

printf(" * DX code %2d was used0,(i+1));

}

68 DRGGroupers.net

}

p = a[9];

for (i = 0; i < 32 && p[i] != ’ 00’; i++) {

if (p[i] == ’1’) {

printf(" * Proc code %2d was used0,(i+1));

}

}

#endif

exit(0);

}

/* This program should produce the following output:

Raw return value from mhdrg1:

0ˆ15ˆ391ˆ21ˆ0.1536ˆ3.10ˆMˆNORMAL NEWBORN

Deconstructed return value from mhdrg1:

rc=0, mdc=15, drg=391, ovn=21, weight=0.1536, mean=3.10, porm=M

desc=NORMAL NEWBORN

dx flags:1, px flags: 0

Significant ICD codes:

* DX code 1 was used

*/

/* eof */

Appendix A: The MDCs 69

Appendix A: The MDCs

This is the list of MDCs as of 2001. They don’t change very often,
but if you want an up-to-date list, you should consult the official
DRG distribution. This list is provided as a convenience and to
give you an idea of what MDCs are.

1. Diseases & Disorders of the Nervous System

2. Diseases & Disorders of the Eye

3. Diseases & Disorders of the Ear, Nose, Mouth & Throat

4. Diseases & Disorders of the Respiratory System

5. Diseases & Disorders of the Circulatory System

6. Diseases & Disorders of the Digestive System

7. Diseases & Disorders of the Hepatobiliary System & Pan-
creas

8. Diseases & Disorders of the Musculoskeletal System &
Conn Tissue

9. Diseases & Disorders of the Skin, Subcutaneous Tissue &
Breast

10. Endocrine, Nutritional & Metabolic Diseases & Disorders

11. Diseases & Disorders of the Kidney & Urinary Tract

12. Diseases & Disorders of the Male Reproductive System

13. Diseases & Disorders of the Female Reproductive System

14. Pregnancy, Childbirth & the Puerperium

15. Newborns & Other Neonates with Condtn Orig In Perinatal
Period

16. Diseases & Disorders of Blood, Blood Forming Organs,
Immunolog Disord

70 DRGGroupers.net

17. Myeloproliferative Diseases & Disorders, Poorly Differen-
tiated Neoplasm

18. Infectious & Parasitic Diseases, Systemic or Unspecified
Sites

19. Mental Diseases & Disorders

20. Alcohol/drug Use & Alcohol/drug Induced Organic Mental
Disorders

21. Injuries, Poisonings & Toxic Effects of Drugs

22. Burns

23. Factors Influencing Hlth Stat & Othr Contacts with Hlth
Servcs

24. Multiple Significant Trauma

25. Human Immunodeficiency Virus Infections

Appendix B: Return Codes 71

Appendix B: Return Codes

The following is a list of valid return codes for DRGGroupers
groupers, as of 2008. This list is provided to give you an idea of
what is returned. Please consult our on-line documentation for an
up-to-date list.

drggrouperstechblog.blogspot.com/2015/10/dae-return-

codes-error-reporting.html

1. means EITHER that there were no diagnosis codes given or
that the given principal dx code does not have an MDC (ie
is not valid as a principal dx).

2. means no DRG could be found to match MDC and princi-
pal dx.

3. means that the given age was not between 0-124.

4. means that the given sex was not 1=male or 2=female

5. is no longer used; Discharge Status is defaulted depending
on various factors (disposition status coding system, eg)

6. depends on various factors; for example, for some DRG
versions this means that birthweight was not between 200
and 9000 grammes.

7. means that the principal dx code was not a valid choice as a
primary diagnosis; the code may be valid, but it is not an al-
lowed starting point for assigning a DRG.

8. means that the DRG masks file could not be found or ini-
tialized by the run-time environment.

9. means that the DRG to be labelled is too high for the speci-
fied DRG version or that there was a HAC violation

10. means that the DRG masks file has internal structural er-
rors.

72 DRGGroupers.net

Appendix C: Discharge Status

The following is a partial list of Discharge Statuses, coded using
the UB92 standard.

For a more complete list, please see the CMS web site:

www.cms.gov/Outreach-and-Education/Medicare-Learning-

Network-MLN/MLNMattersArticles/downloads/SE0801.pdf

01 = Home, Self Care

02 = Short Term Hospital

03 = Skilled Nursing Facility

04 = ICF

05 = Other Facility

06 = Home Health Service

07 = Against Medical Advice

08 = Home IV Service

20 = Expired

30 = Still a patient

Appendix D: Software Licenses 73

Appendix D: Software Licenses

There are the standard licenses DRGGroupers grants through our
parent company, M+H Consulting, LLC.

Reseller License

If you want to embed our grouper in a product you will be selling
on the market, then you need to negotiate a custom license agree-
ment. Please contact us for details.

Non-standard Licenses

Our licensing is negotiable and we have granted custom license in
past. If you have an arrangement you would like us to consider,
contact us.

Contact Information

You can find our up-to-date contact information on-line:

www.drggroupers.com/contact.html

Standard Client Software License

M+H Consulting, LLC grants to the purchaser a single CPU li-
cense for the accompanying software. The software may not be
used on more than one computer at the same time. The purchaser
shall not make copies of the software except for use as a backup.

The accompanying software is the property of M+H Consulting,
LLC and may not be distributed. The software may not be dis-
tributed as part of an application or external website without the
express, written consent of M+H Consulting, LLC.

74 DRGGroupers.net

Standard Server Software License

M+H Consulting, LLC grants to the purchaser a single CPU li-
cense for the accompanying software. The software may not be
used on more than one computer at the same time. The purchaser
shall not make copies of the software except for use as a backup.

The software may run on only one CPU, "the server," at a time, but
no restriction is placed on how many client CPU’s can access the
server at a time. However, the purchaser may not put the software
on a server to which there is network access outside of the purchas-
er’s org anization. In this context, "organization" refers to parent
companies and their wholly-owned subsidiaries and business units.

The software is the property of M+H Consulting, LLC and may not
be distributed. The program may not be distributed as part of an
application or external website without the express, written consent
of M+H Consulting, LLC.

Appendix E: File Dictionary 75

Appendix E: File Dictionary

Here is a list of files generated by DRGGroupers. This list is pro-
vided as a service to our customers, to help you figure out what
you have and what you lack in the event of an issue with your in-
stallation of any of our offerings.

drgmasks.v33

This file is part of every one of our products and contains the diag-
nosis code and procedure code "attributes" (male-only, etc)

libdrgv33_32bit.so

• Instructions: rename to libdrgv33.so before installing on a 32-bit
system

This file is found in the following product:

• C-callable shared object (product ID COBJSO)

libdrgv33.so

• Instructions: install in your library path on a 64-bit system

This file is found in the following product:

• C-callable shared object (product ID COBJSO)

drgfiltv33.aix

• Instructions: rename to drgfiltv33 before installing on an IBM
AIX system

This file is found in the following product:

• DRGFilt for AIX (product ID AIXFILT)

76 DRGGroupers.net

drgfiltv33.exe

This file is found in the following product:

• DRGFilt for 32 bit Windows (product ID WINFILT)

drgfiltv33_32bit

• Instructions: rename to drgfiltv33 before installing on a 32-bit
Linux system

This file is found in the following product:

• Linux DRGFilt (product ID LINUXFILT)

drgfiltv33

• Instructions: use as-is on a 64-bit Linux system

This file is found in the following product:

• Linux DRGFilt (product ID LINUXFILT)

drgman1.pdf

This file is part of every order. It is our technical documentation as
a PDF. This PDF is available for separate purchase in book form
from Amazon as well.

vbdrgv33.exe

• Instructions: run this Windows installer on Window systems to
install vbdrgv33.dll

This file is found in the following product:

• VB-callable grouper DLL (product ID VBDLL)

Appendix E: File Dictionary 77

mhdrgvb.xls

This file is found in the following product:

• MS-Excel DRG Assigning spreadsheet (product ID XLDRG)

MHGrouper.mdb

This file is found in the following product:

• MS-Access DRG Assigner (product ID ACCESSDRG)

perldrgv33_32bit.so

• Instructions: rename to perldrgv33.so before installing into a
32-bit Linux Perl path

This file is found in the following product:

• Perl-callable shared object (product ID PERLSO)

perldrgv33.so

• Instructions: copy into directory known to your perl installation

This file is found in the following product:

• Perl-callable shared object (product ID PERLSO)

perldrgv33.pm

• Instructions: copy into directory known to your perl installation

This file is found in the following product:

• Perl-callable shared object (product ID PERLSO)

78 DRGGroupers.net

phpdrgv33_32bit.so

• Instructions: rename to phpdrgv33.so before installing into a
32-bit Linux Perl path

This file is found in the following product:

• PHP-callable shared object (product ID PHPSO)

phpdrgv33.so

• Instructions: rename to mhdrg.so before installing into a 64-bit
Linux Perl path

This file is found in the following product:

• PHP-callable shared object (product ID PHPSO)

Appendix F: New for 2015 (V33) 79

Appendix F: New for 2015 (V33)

The big news in 2015 is the arrival of ICD10 as the underlying
coding scheme for diagnoses and procedures.

This mean embracing the new coding scheme and the POA concept
and the exempt concept.

Interally, this meant a new code base for us and a new dev elopment
environment which slowed our release this year, but which we
hope will great speed up our releases starting next year.

Externally, this meant that our products only support one DRG ver-
sion now (the ICD9cm-based DAE is backwardly compatible) and
that our APIs have been rationalized somewhat (an explicit "ex-
empt" flag and a have-POAs indicator).

By far the biggest change was the long-awaited upgrade to
DRGFilt to support a more standard and more powerful control file
format. This year we released .INI file support. For next year we
are evaluating YAML and XML as additional formats.

For the most recent news on our products, please visit our tech
blog:

drggrouperstechblog.blogspot.com/

For details, see the linked posts on our tech blog; link by the label
"v33".

80 DRGGroupers.net

Glossary

The following is a glossary of terms used in this book which may
not be familiar to the reader, especially the programmer who is try-
ing to embed a grouper in their software.

The definitions here are not intended to be complete; instead, they
are intended to make our descriptions and directions clearer.

Classification

DRGs are classified as either Medical or Surgical because some
conditions have both a surgical and non-surgical treatment path
and the expected resource consumption of the two paths are quite
different.

CPT Codes

The American Medical Association has defined a scheme for cod-
ing procedures, which they call CPT (Current Procedural Termi-
nology). For more information, go on-line:

www.ama-assn.org/ama/pub/category/3113.html

DRG

DRG stands for Diagnosis Related Group. Inpatient medical
records can be classified into separate groups. Each group is identi-
fied by a number. This number is the DRG. Each DRG has various
attributes associated with it: the description, the Major Diagnostic
Category (MDC), the expected Length Of Stay (LOS), the weight
(a measure of how resource-intensive it is), a low trim point and a
high trim point.

Glossary 81

DRG Grouper

Software that assigns a DRG is called a Grouper. Groupers take
coded medical data elements as input and give a DRG as output.
The inputs are: age-on-admission, sex, discharge disposition, diag-
nosis codes (before v33, in ICD9cm; after v32, in ICD10) and pro-
cedure codes (before v33, in ICD9cm; after v32, in ICD10).

Up to ten diagnoses are considered and the diagnosis codes are as-
sumed to be in order of significance.

Up to fifteen procedures are considered and the procedure codes
are assumed to be in order of significance.

DRG Version

A new definition of DRGs is released every October 1st. Each new
definition is a new version, requiring a new release of the software
and a new masks file.

US Federal (aka CMS or HCFA) DRG versions are released in Oc-
tober of every year. Version 3 (the first version we support) was re-
leased in October of 1985. So if you are using calendar years,
1/1/2001 - 9/30/2001 would be covered by version 18 and
10/1/2001 through 9/30/2002 would be covered by version 19. And
so on.

The official release is on October 1st every year and we usually re-
lease our implementation of the algorithm by October 15th every
year.

Please specify which version you need for any of our products.

For our software, version numbers can be preceeded by an optional
letter ’f’ for federal (in the ICD9cm-based versions) and by an op-
tional letter ’v’ for version (starting with v33).

82 DRGGroupers.net

Federal DRGs

The original DRGs were defined by HCFA (now CMS), a part of
the United State federal government. We call these DRG defini-
tions "the federal DRGs" For more information, see

en.wikipedia.org/wiki/Diagnosis_Related_Group

HAC (Hospital Acquired Complication)

This is a set of rules which change the DRG assigned for a non-ex-
empt institutation based on any POA flags which are present. This
was introduced in US federal DRG assigment with version 26, re-
leased in October of 2008.

ICD9cm Codes

The official federal grouper, version 2 through 32 inclusive, only
accepts ICD9cm codes (International Committee on Diseases, ver-
sion 9, Clinical Modifications) for both diagnoses and procedures.
There are two lists of codes: a list of diagnoses and a separate list
of procedures. Procedures were originally often called "surgeries".
The ICD9cm codes are defined by organ system and have a major
and minor component, often written

major.minor

ICD10 Codes

The official federal grouper, starting with v33, only accepts ICD10
codes (International Committee on Diseases, version 10) for both
diagnoses and procedures. There are two lists of codes: a list of di-
agnoses and a separate list of procedures. Procedures were origi-
nally often called "surgeries". The ICD10 codes of either kind are
alpha-numeric and have a maximum length of seven characters.

Glossary 83

Major Diagnostic Category (MDC)

The MDC is a kind of pre-DRG, a looser category from which the
appropriate DRG is chosen. Some analyses are based on this looser
category in order to provide a higher-level result. See Appendix A
for a listing of MDCs as they were in 2001.

Masks File

The canonical US government grouper, which we call "the federal
grouper", applies logic and masks to its input to determine the
DRG. The masks are code-specific bit masks representing various
conditions. Thus, in order to assign a DRG you need both grouper
software, which contains the logic, and the appropriate masks file,
which contains the masks.

For ICD9cm-based versions (2-32), we expect masks files to be
named

drgmasks.fN

where N is the version to which they correspond. So the masks file
name for version 8 would be

drgmasks.f8

and the masks file name for version 21 would be

drgmasks.f21

For ICD10-based versions (33 and above), we expect masks files to
be named

drgmasks.vN

where N is the version to which they correspond. So the masks file
name for version 33 would be

drgmasks.v33

84 DRGGroupers.net

POA (Present on Admission)

In order to avoid paying for medical mistakes, diagnoses are now
flagged as having been present on admission (POA).

The values for the POA flag are not, as one might expect, simply Y
or N; rather the following options are defined:

• Y for Yes -N for No -U for Unspecified -W for clinically unde-
termined -1 for unreported / not used / exempt from reporting

Return Code

Our groupers always return a code which indicate success (a value
of zero) or some kind of failure (a non-zero value). For details on
the possible kinds of failure, you can refer to the list in Appendix
B, or our tech support page on our web site:

Significant Code Bit String (dflg and sflg)

Not all the codes, either diagnosis or procedure, are significant in
determining the DRG. Our groupers will tell you which codes were
used in the DRG assignement and which were not.

This information is conveyed by a string of either ones or zeros.
For historical reasons, this string of characters is referred to as "the
bit string."

There are ten input Diagnosis codes, and so there are ten digits in
the Diagnosis bit string. There are fifteen input Procedure codes, so
there are fifteen digits in the Procedure bit string.

If a given digit is zero, then the corresponding code was not used;
if a given digit is one, then the corresponding code was used.

drggrouperstechblog.blogspot.com/2011/08/question-hi-

tech-support-pdf-is-very.html

Glossary 85

Index

A
AP-DRGs 16

API 40, 45, 49, 68, 82

C
Comma Separated Value file (see CSV)

Control File 30, 31, 33, 34, 82

CSV 30, 31, 32, 33, 35, 36, 37, 38

D
Discharge Disposition (see Discharge Status)

Discharge Status 13, 17, 21, 32, 51, 57, 62, 65, 69, 74, 75

DRG Properties 18

DRGFilt Control File (see Control File)

F
Federal DRGs 15, 85

H
HAC 18, 19, 21, 40, 45, 47, 51, 52, 57, 60, 63, 67, 69, 74, 85

Health Systems Management Group 14

Hospital Acquired Complication (see HAC)

M
M & H Consulting (see M+H Consulting)

M and H Consulting (see M+H Consulting)

M+H Consulting 20, 56, 61, 64, 65, 68, 76, 77

86 DRGGroupers.net

Major Diagnostic Category (see MDC)

mhdrg.dll 47, 49, 69

mhicd.dll 49, 57, 69

mhicdvb.dll 48

Mills, Ron 14

P
POA 18, 19, 21, 32, 33, 35, 36, 37, 38, 40, 42, 45, 47, 51, 52,

53, 54, 55, 57, 60, 62, 63, 65, 67, 69, 82, 85, 87

Present On Admission (see POA)

R
RDRGs 13, 16

S
SDRGs 15, 16

SWIG 57, 60, 61, 63, 65, 69

U
UHDDS 17, 21

